

Bilfinger Efficiency GmbH

EnergieEffizienz von Kühlanlagen: Optimierung durch präzises Energie-Monitoring

Robert Meier, Thomas Theiner

ACHEMA 2015, Frankfurt am Main |15.-19. Juni 2015

Auf zu neuen Effizienz-Potenzialen

- Die Kälteanlage: Das unbekannte Wesen
- Energie-Monitoring:Mehrwerte für die Kältetechnik
- 3. Aufbau einer Kälteanlage
- 4. Signifikante Messpunkte
- Erkenntnisse aus dem Energie-Monitoring
- 6. Einsparpotenziale in Kälteanlagen
- 7. Praxisbeispiel

Die Kälteanlage: das unbekannte Wesen

Weite Verbreitung: • Kälteanlagen haben vielfältige Anwendungsbereiche in verschiedenen Branchen und Liegenschaften

Hoher **Energiebedarf:** Der Energiebedarf für Kältesysteme liegt bei ca. 14% des gesamten Energiebedarfs in Deutschland.

Enormes Potenzial: •

Effizienzpotentiale zwischen mindestens 10 und 50%

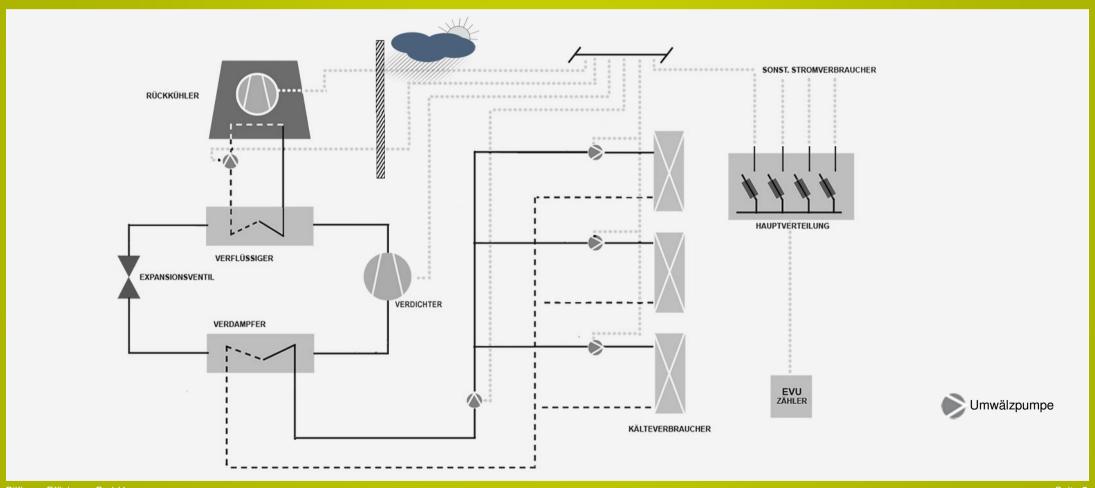
Komplexität:

- Zusammenspiel vieler verschiedener Einzelkomponenten in einem Kälteversorgungssystem (Verdichter, Ventilatoren, Wärmetauscher, Pumpen, Regelungstechnik)
- Wechselwirkungen der einzelnen Bauteile untereinander mit Auswirkungen auf den Energieverbrauch
- Präzises Energie-Monitoring der Einzelkomponenten zur Umsetzung der richtigen Maßnahmen notwendig

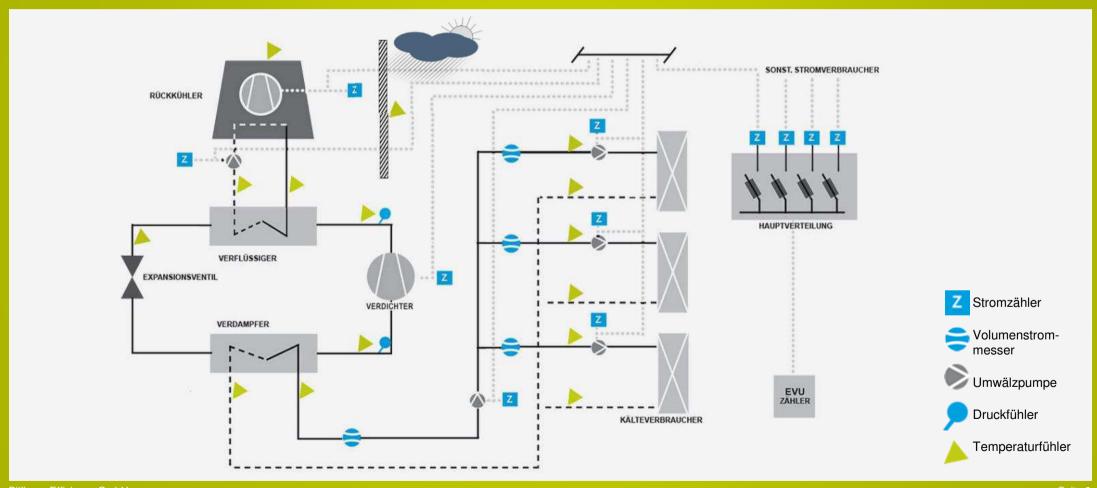
Potenziale erkennen durch Energie-Monitoring

Energie-Monitoring-Systeme

- machen Energieverbräuche transparent
- lokalisieren die Ursachen für erhöhte Energieverbräuche
- identifizieren Einsparpotenziale
- optimieren Energieverbrauch
- steigern die Effizienz der betrachteten Systeme


Mehrwert

- Verlässliche Daten durch kontinuierliches Monitoring
- Überblick und Kontrolle durch detaillierte und umfassende Analysen
- Optimierte Nutzung und Bereitstellung von Energie
- Reduzierte Energiekosten
- Steigerung von Wirtschaftlichkeit und Wettbewerbsfähigkeit


Aufbau einer Kälteanlage

Signifikante Messpunkte

Transparenz durch präzise Messwerte

Druck- und
Temperaturmesswerte

Rückschlüsse auf Defekte am Expansionsventil

Vermeidung von Über- oder Unterfüllung des Kältekreislaufes mit Kältemittel

Messung der Temperaturdifferenz im Verdampfer und Verflüssiger

- Rückschlüsse auf Nutzung, Auslegung und Verschmutzung von Wärmetauschern
- Potenzial zur Absenkung der Kondensations- bzw. Anhebung der Verdampfungstemperatur

Bestimmung des Wirkungsgrades des Verdichters

- Einordnung der Verdichtereffizienz im Vergleich zu modernen Verdichtern
- Erkennen von Verschleißerscheinungen oder Schäden am Verdichter

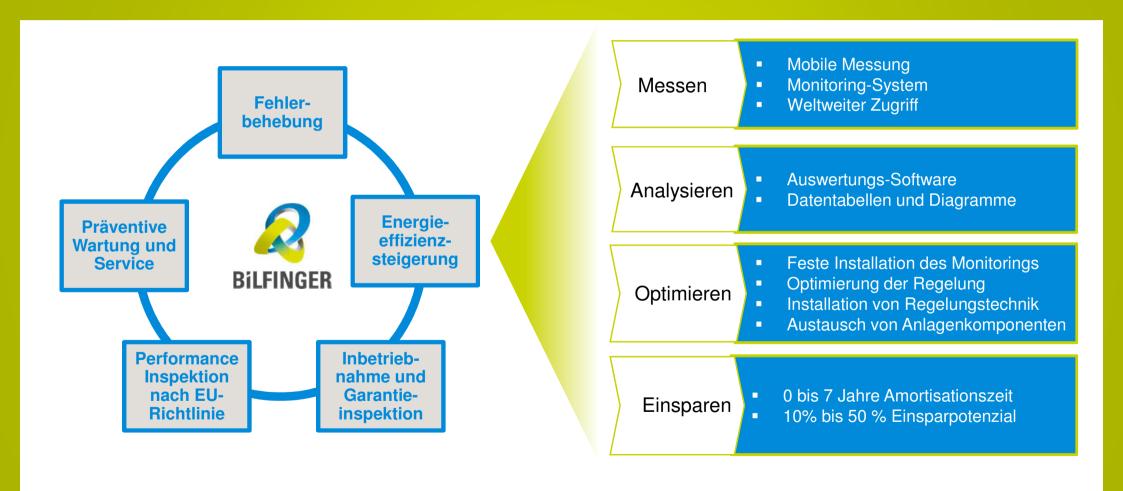
Aufschalten von Pumpen, Lüftern und Wasserzulauf der Rückkühler

- Sichtbarkeit nutzloser Betriebsweisen von Komponenten und vermeidbarer Verbräuche
- Festlegung effizienter Randbedingungen für die Verflüssigung (trocken, benetzt)

Automatisch Bestimmung von Effizienz-Kennzahlen (EER, SEI)

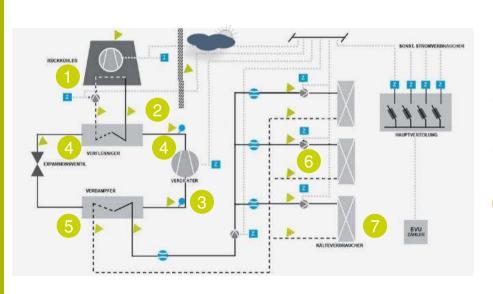
- Anforderung Kältemaschinen anhand der für den Anwendungsfall höchsten Effizienz (EER)
- Optimierung der Regelungsstrategie anhand der Gesamt-System-Effizienz (SEI)

Abhängigkeiten zwischen Kältebedarf und Außentemperatur bzw. Produktion


- Nutzungsabhängige Regelung der Kaltwassertemperatur
- Einrichtung von automatischen Alarmierungen bei Überschreitung des erwarteten Bedarfs

Informationen zum aktuellen und zum erwarteten Kältebedarf

 Bedarfsverschiebung zur Optimierung des Teillastverhaltens der Maschinen bzw. zur Optimierung der Strombeschaffung (Netznutzungsentgelte, Regelenergievermarktung)


Gründe für die Einführung eines Energie-Monitoring Vorgehensweise bei der Einführung

Übersicht Einsparpotenziale

1 VERFLÜSSIGER

VERDICHTER

ECONOMIZER

VERDAMPFER

VERTEILUNG

VERBRAUCH

WRG

+/- 10%

25 – 50 %

3 – 15%

/ 0

+/- 6%

+/- 10%

5 – 15%

5 – 15%

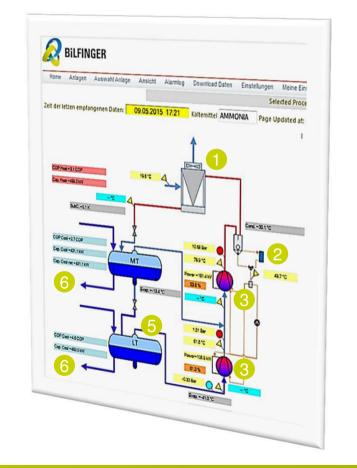
Einsparpotenzial 10 - 50%

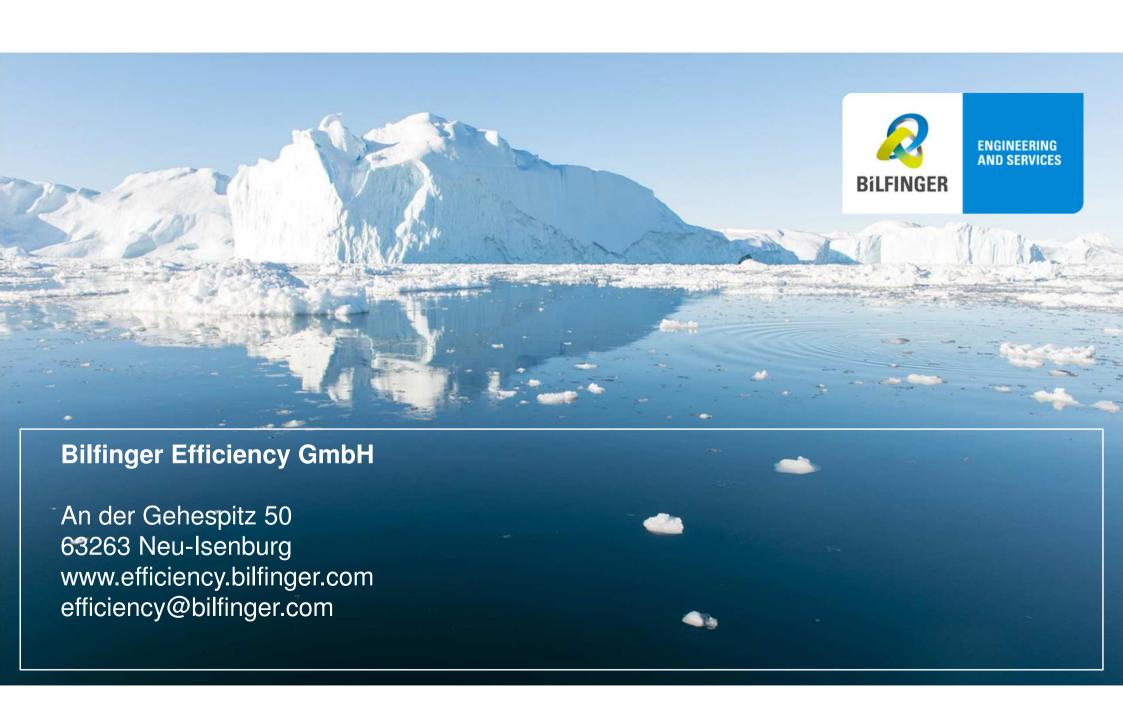
Wegbereiter zum Erfolg: Energie-Monitoring von Kälteanlagen

Erfolgsfaktoren:

- Optimierte EnergieEffizienz-Kennzahlen (EER, SEI)
- Identifikation der Effizienz-Maßnahmen anhand von Mess-Ergebnissen
- Energie-Einsparungen von garantiert > 10% und bis zu 50% der bislang eingesetzten Strommengen
- Amortisationszeiten der Effizienz-Maßnahmen zwischen 0 7 Jahren
- Umsetzung der ermittelten Maßnahmen zu geringen Investitionskosten
- Umfassender Einblick in das Kältesystem
- Fortlaufende Bilanzierung der Stromverbräuche, Drücke und Temperaturen der Kälteerzeugungsanlage
- Kontinuierliche Überwachung der Effizienz des gesamten Kälteerzeugungssystems

Praxisbeispiel: Hersteller von TK-Produkten Umgesetzte Maßnahmen (Auswahl)




- Allgemeine Absenkung des Kondensationsdruckes
 - Zusätzliche Absenkung des Kondensationsdruckes durch Änderung der Verdichterregelung
 - Optimierte Anwahl der RKW und Regelung der Luftmengen
- Optimierung und Ausbau der vorhandenen WRG der Ölkühlung
- Umstellung der Leistungsregelung eines Verdichters
- Anpassung des Verdampfungsdruckes
 - Umstellung der Maschinenabfolge (nach Prüfung der Seitenlast)
- 6 Reduktion der Verteilungsverluste

Eine Energie-Einsparung von 27% wird garantiert!

EUR 100.000 pro Jahr!

